Nursery production of the Pacific White Shrimp, Litopenaeus vannamei, in a zero-exchange bioflocdominated system operated with a³ injectors

Tzachi Samocha¹, Leandro Castro¹, David Prangnell¹, Tom Zeigler², Craig Browdy², Tim Markey², Darrin Honious³, and Bob Advent⁴

¹Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas
²Zeigler Bros., Gardners, Pennsylvania
³YSI, Yellow Springs, Ohio
⁴a³ All Aqua Aeration, Orlando, Florida

Aquaculture America 2015 February 19-22, 2014 New Orleans, Louisiana

Introduction

Use of greenhouse-enclosed super-intensive limited discharge biofloc systems can potentially:

- > Reduce water usage
- Reduce effluent discharge
- Increase biosecurity
- ➤ Be constructed close to markets
- Provide economic advantages when used for nursery to stock outdoor ponds

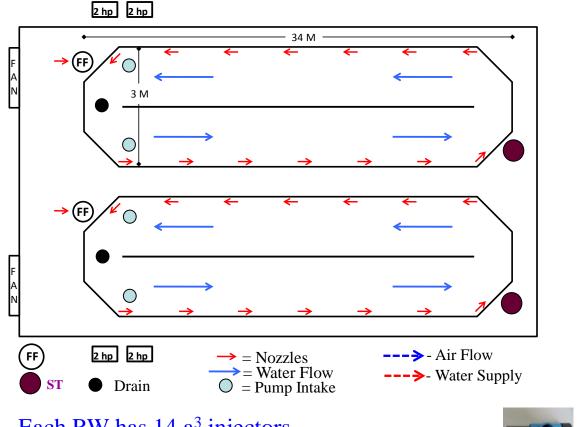
Introduction

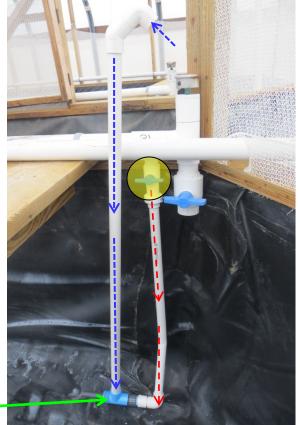
Super-Intensive

The systems are equipped with automated monitoring & control tools & require substantial oxygen inputs to satisfy the high demand by the shrimp & the microbial communities

➤ Previous studies at the Texas A&M AgriLife Research used a combination of a pump driven Venturi injectors, airlifts pumps, air diffusers and oxygen to provide adequate DO levels & mixing

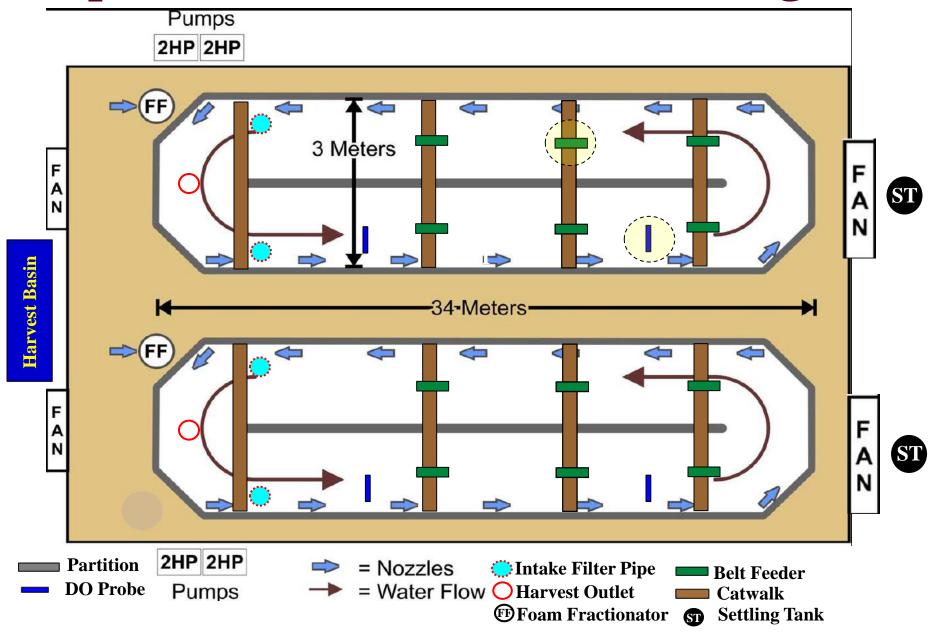
- For the last few years we have been testing a pump-driven non-Venturi injectors (a^3 All Aqua Aeration, Orlando, FL) that may eliminate the need to use pure oxygen in these systems
- According to the manufacturer the injectors are capable of providing a 3:1 air to water ratio

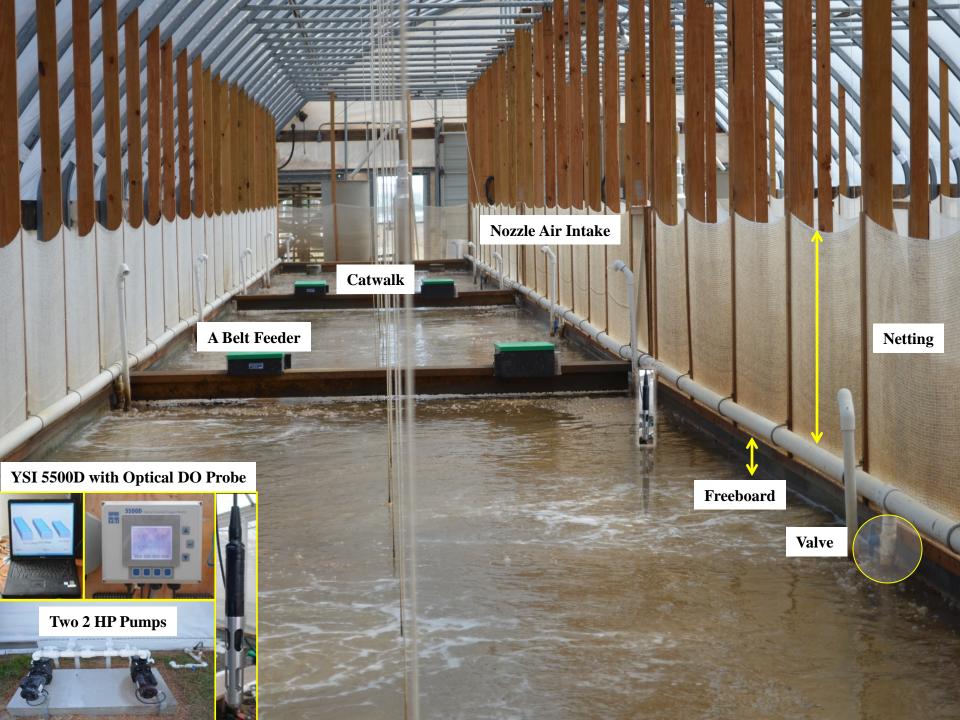

Objectives


- ➤ Evaluate the ability of the a³ injectors to maintain sufficient DO and mixing levels in nursery RWs operated with no water exchange
- ➤ Evaluate if the injectors are safe to use for nursery of very young PL
- ➤ To study the effect of the injectors on shrimp growth, survival, and FCR
- ➤ To study the changes in selected WQ indicators during the nursery phase

100 m³ RWs – Greenhouse

Water & Air Flow




- ➤ Each RW has 14 a³ injectors
- One ST & one FF per RW
- Two 2 hp pumps per RW that can be operated independently or simultaneously, depending on loading factors (e.g., biomass, DO concentration)

Top View - 100 m³ RWs at Texas AgriLife

Foam Fractionator

- ➤ Operated with one a³ injector, flow rate ≈ 28 Lpm, fed from the pump's side loop
- Use of fabric for dewatering and drying of the organic particulate matter

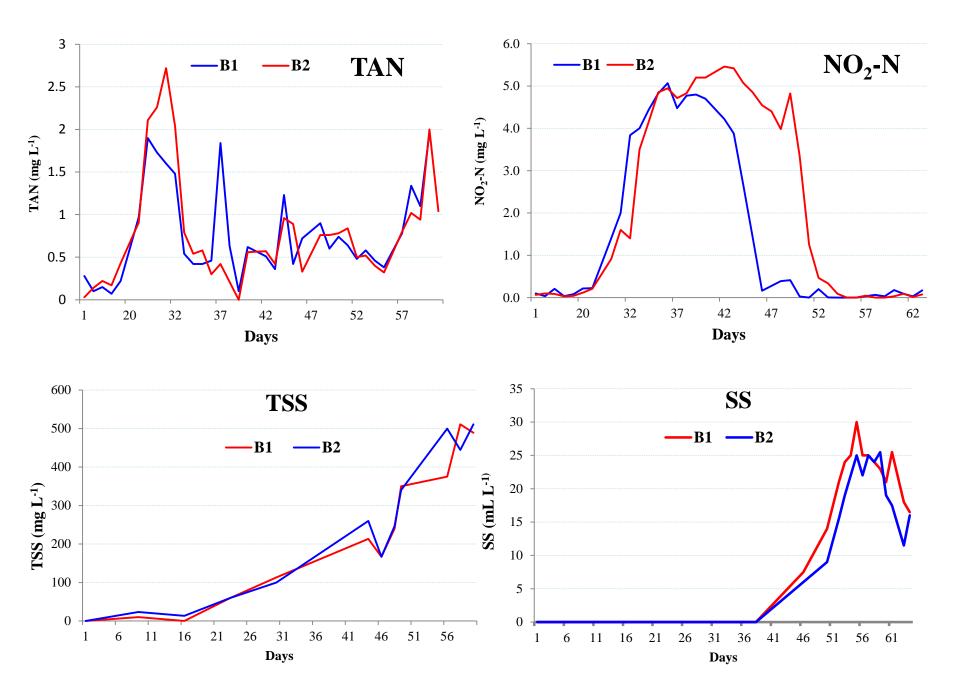
Settling Tanks

- ➤ Conical tank 2 m³, flow rate 20 Lpm, fed from the pump's side loop
- ➤ Use of fabric for dewatering and drying of the organic particulate matter

Materials & Methods

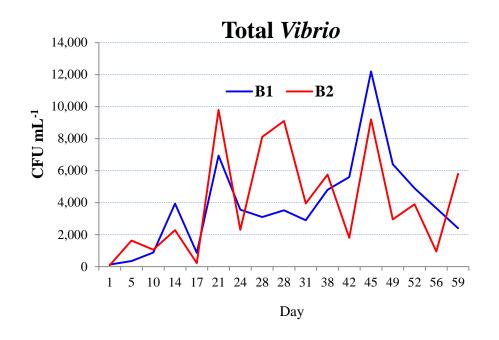
- > RWs were filled with NSW adjusted to 30 ppt salinity
- > 540 PL_{5-10}/m^3 (0.94±0.56 mg; CV: 59.7%) hybrid Fast-growth/Taura-resistant
- Continuous feeding from Day 2
- > FW to offset losses to evaporation & solids removal
- > Filter pipes fitted with 0.5, 0.8 & 1 mm screens
- ➤ Temp., Sal., DO, pH: 2/d; SS: 1/d; TSS: ≥1/wk; TAN, NO₂-N, NO₃-N, VSS, turbidity, RP: 1/wk; Alka.,: adjusted 2/wk using NaHCO₃ to maintain 160 mg/L as CaCO₃
- ➤ Remote access YSI 5500 DO monitoring w/ optical DO/RW
- ➤ TCBS agar for monitoring yellow and green-colony forming *Vibrio*: 2/wk

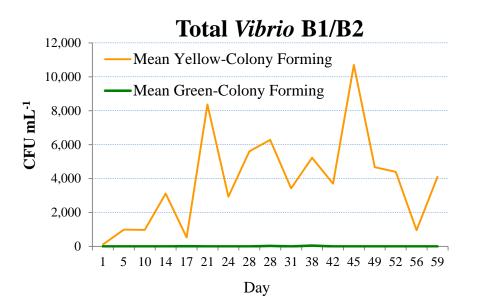
Materials & Methods


- ➤ Biofloc control: FF & ST
- ➤ Use of commercial nitrifying bacteria: KI-NitrifierTM (*Keeton Industries, Wellington, CO*) and sugar to stimulate nitrification
 - ➤ Application: 1 g per 3,785 L or 26.42 g RW⁻¹, on Day 1, 4, 7, 10 & 32
- ➤ Use of commercial probiotic, Ecopro (*EcoMicrobials*TM, *Miami*, *FL*) every three-days to daily:
 - ➤ Routine: every 3 days: 200 mg m⁻³ plus: Day 1: 55 mg m⁻³, Day 39: 400 mg m⁻³ & Day 42: 300 mg m⁻³

Materials & Methods

- Shrimp were fed a combination of EZ-Artemia & dry feed (Zeigler Raceway Plus <400 μm) for the first 8 days post-stocking & Zeigler Raceway Plus (<400 μm, 400-600 μm, 600-850 μm), & Zeigler Shrimp PL 40-9 with V-pakTM (1 mm, 1.5 mm, 2 mm) for the remainder of the trial
- ➤ Feed size & rates were adjusted based on shrimp growth & size variation continuous delivery by belt feeders


		Temp. (°C)	Sal. (ppt)	DO (mg L-1)	pН
AM	Mean	26.4	30.4	6.8	8.1
	Min	22.2	29.7	4.6	7.6
	Max	29.7	31.1	8.5	8.5
PM	Mean	26.8	30.4	6.6	8.1
	Min	22.9	28.6	4.4	7.6
	Max	30.2	31.1	7.9	8.5



Results

Green colony-forming *Vibrio* concentrations remained below 50 CFU/mL and less than 2% of the yellow colony-forming concentrations throughout the trial

Summary of 62-d nursery study in two 100 m 3 RWs with Litopenaeus vannamei stocked at 540 PL $_{5-10}$ m $^{-3}$

RW	Yield	Av. Wt.	Max	Min	CV	Sur.	g/wk	FCR
	(kg/m^3)	(g)	(g)	(g)	(%)	(%)	g/wk	
	3.43							
B2	3.28	6.43	10.5	0.5	31.0	94.6	0.73	0.81

- ➤ Low temp. for the 1st three wks resulted a in long trial
- > PL high size variation required frequent monitoring of individual weight to determine feed particle size
- ➤ The high variation may have prevented full expression of the shrimp growth potential
- ➤ High size variation continued throughout the harvest

Conclusion

- Preparing nitrifying bacteria rich water ahead of stocking prevented PL exposure to high TAN & Nitrite
- ➤ The use of probiotic may have contributed to the low FCR. A follow-up controlled study is needed urgently
- ➤ Use of TCBS agar plates served as a good tool to monitor non- and pathogenic *Vibrio* in culture medium
- ➤ Although the a³ injectors were used with very small PL, shrimp were not damaged
- ➤ One 2 hp pump was sufficient to maintain high DO (4.4-8.5 mg L⁻¹) at biomass load of 3.43 kg shrimp m⁻³ with no need for oxygen supplementation
- ➤ a³ injectors provided adequate mixing of the biofloc

Acknowledgements

➤ The National Sea Grant, Texas A&M AgriLife Research for funding

- > Zeigler Bros. for the feed & funding
- > YSI for the DO monitoring systems

- > Keeton Industries for the nitrifying bacteria
- > Aquatic Eco-Systems for the foam fractionators

- > Colorite Plastics for the air diffusers
- > Firestone Specialty Products for the EPDM liner

